
International Journal o f  Theoretical Physics, Vol. 33, No. 7, 1994 

Estimating Perturbative Coefficients in High-Energy 
Physics and Condensed Matter Theory 
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RecewedJanuary 1~ 1994 

Using our method to estimate perturbative coefficients in quantum field theory 
(QFT), we consider several examples in high-energy physics and condensed 
matter theory. The results, in all cases, are remarkably good for the known 
terms. We also predict the values of as yet unknown terms. Moreover, we 
consider the general convergence properties of asymptotic series in QFT. 

Recently we proposed  (Samuel e t  al . ,  1992, 1993, 1994) a new method  
to estimate coefficients, in a given order  o f  perturbative quan tum field 
theory ( P Q F T )  without  actually evaluating all o f  the Feynman  diagrams in 
this order. 

Our  method  makes use o f  Pad6 approximants  (P.A.). We begin by 
defining the PA ( type I): 

ao + a l x t  �9 �9 �9 + a N  X N  
[U, MI  = 

1 + b l X t  �9 �9 �9 + b M  X M  

where we set 

S = S o  Jl- S l  X -q - . , , 2c S N  + M X N  + M 

[N,  M ]  = S + O ( x  N + M + 1) 

To illustrate the method,  consider the simple example 

(1) 

(2) 

(3) 

In(1 + x) x x 2 x 3 
- 1 + - -  - - -  ( 4 )  

x - - 2  3 c 
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We write the (1, 1) Pad6 as follows: 

[1, 11 

It is easy to show that 

ao = 1, b~ = 2/3, 

a~ (5) 
l + b l x  

a1=1/6, c = 9 / 2  

We can see that the prediction for c is close to the correct value c = 4. For  
x = 1, we get [1, 1] = 7/10, close to the correct result, In 2 = 0.6931. This is 
much better than the partial sum 

1 1 5 
1 - ~ +  ~ = ~ = 0.8333 (6) 

One can easily extend this to calculate 

1 + x/2 
[1,2] = 1 + x  +x2 /6  (7) 

and, hence, for x = 1, we obtain 9/13=0.6923,  remarkably close to 
the correct value, In 2. For  our purposes here, however, we are interested 
in the estimate for the next coefficient, r4. It can easily be seen, either 
directly or from equation III of  equations (8) below, that our estimate 
is 

1 12 
r 4 = --~ + ~-~ = 0.1944 

remarkably close to the correct value, 1/5 = 0.2000. 
We have obtained algebraic formulas for the Pad~ approximant pre- 

diction (PAP) for IN, M], where M = 1, 2, 3, 4, 5, and 6, for any N. We 
present here only the first few, due to space limitations: 

I &=s~/s ,  [1, 1] 
$4 = $2 /$2  [2, 1] 

I I  $3 = 2 s , $ 2 / s o  - $31/$2o [0, 2] 

2s ,  & &  - & s ~  - s~ 
I I I  & = S 2 - SoS2 [1, 2] 

(8) 

where I uses two terms, II three terms, and III four terms. Moreover, 
we have a computer program which computes the PAP [N, M] for any 
N and M, by solving the linear equations (1 ) - (3 )  numerically. The 
results from the computer program agree with our formulas in all 
cases. 
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Consider  first the series 

i f ( y ) ] - - I  ~___ 1 + y  __y2 q_ 3y3 __ 13y4 + 71y5 

-- 461y 6 + 3447y 7 -- 29,093y 8 

where 

(9) 

f ( Y )  = Z ( - - 1 ) " n ! y "  =2Fo(1 ;  l ; - - y )  (10) 
n=O 

is the Euler  series and F is the hypergeometr ic  function. We re turn to 
consider f ( y )  later. The  results for  the series in equat ion  (9) are given in 
Table  I. One  can see tha t  the est imate is r emarkab ly  good  with the 
accuracy improv ing  as N and M increase. 

Next  consider  the series 

(1 3 ) ~ ( 4 n - - 1 ) / 4  2Fo ~ , ~ ; - - x  = ( - - 1 )  n ( 1 / 4 ) ( 3 / 4 ) ' ' "  x n (11) 
n=l  n! 

In  spite o f  the fact that  this is a diverging series, it can be seen f rom 
Table  I I  that  the est imates for  the coefficients are excellent, improv-  
ing as N and M increase. No te  that  the terms rapidly increase in 
magni tude.  

We now turn to two examples  f rom condensed mat t e r  theory. We first 
consider  the two-dimensional  square lattice and its magnet ic  susceptibility 
Z(w), where 

w = t a n h ( J / k T )  (12) 

Table I. [f(y)]-l ,  wheref(y) = zFo(1, 1, -y) ,  Is the Euler Series a 

No. of input 
[N, M] coefficients Pad6 Exact % error 

[0, 1] 2 +1 -1  - -  
[0,2] 3 - 3  +3 - -  
[1, 1] 3 +1 +3 67 
[1, 2] 4 - 7  - 13 46 
[1, 3] 5 47 71 34 
[2, 2] 5 59 71 17 
[2, 3] 6 -413 -461 10 
[2, 4] 7 3207 3447 7 
[3, 3] 7 3303 3447 4.2 
[3, 4] 8 -28,373 -29,093 2.5 

~See Tables VII and VIII. 
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Table II. Values for the Series i 3 zFo(~, ~, - x )  given in Equation (11) 

No. of input 
IN, M] coefficients Pad~ Exact % error 

[1, 1] 3 -0.22 - 0.42 47 
[2, 1] 4 0.872 1.289 32 
[ 1, 2] 4 0.912 1.289 29 
[3, 3] 7 - 150.3 - 157.8 4.7 
[6, 5] 12 8.827 x 106 8.845 x 106 0.2 
[5, 6] 12 8.827 • 106 8.845 • 106 0.2 
[6, 6] 13 - 1.0616 • 108 - 1.0627 • 10 s 0.I 
[8, 7] 16 2.9086 • 1011 2.9090 • 1011 0.015 
[7, 8] 16 2.90859 x 1011 2.9090 x 1011 0.015 
[9, 9] 19 - 1.42686 x 1015 - 1.42689 x 1015 0.002 

[I0, 9] 20 2.71240 X 1016 2.71243 • 1016 0.001 
[9, 10] 20 2.71240 x 10 t6 2.71243 • 1016 0.001 
[10, 10] 21 -5.42725 • 1017 -5.42728 • 1017 0.001 
[10, 11] 22 1.t40189 • 1019 1.140192 • 1019 0.003 

This  is the h igh - t empera tu re  expans ion  for  the  Is ing m o d e l  o f  f e r romag-  
netism. The  series is given by  (Baker ,  1975, p. 10) 

d In X = 4 + 8w + 28w 2 + 48w 3 q- 164w 4 
dw 

+ 296w 5 + 956w 6 + 1760w 7 + 5428w 8 

+ 10,568w 9 + 31,068w 1~ + 62,640w H 

+ 179,092w 12 + 369,160w 13 + 1,034,828w 14 (13) 

The  results  are shown in Table  III .  A g a i n  the es t imates  are  excellent  and  
the accuracy  improves  as N and  M increase.  

W e  next  cons ider  the h igh - t empera tu re  expans ion  o f  the  magne t ic  
suscept ibi l i ty  •(x) for  the spin-�89 Heisenberg  model .  The  expans ion  is given 
by  (Baker ,  1975, p. 276) 

Z(x) = 1 + 12x + 240x 2 + 6624x 3 

+ 234,720x 4 + 10,208,832x 5 + 526,810,176x 6 

+ 31,434,585,600x 7 + 2,127,785,025,024x 8 

+ 161,064,469,168,128x 9 where x = E / k T  (14) 

The  results  are  shown in Table  IV. Aga in  the results  are excellent  and  the 
accuracy  improves  as N and  M increase.  Moreove r ,  we use the [4, 5] Pad6 
to predic t  the next  ( u n k n o w n )  term.  
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Table IIL (d In z)/dw, Where Z is tile Magnetic Susceptibility for the 2D Square Lattice Ising 
Model of Ferromagnetism (High-Temperature Expansion) 

No. of input 
[N, M] coefficients Pad6 Exact % error 

[ 1, 11 3 98 48 104 
[ 1, 2] 4 201 164 22.8 
[2, 1] 4 82 164 49.8 
[2, 2] 5 288 296 2.8 
[2, 3] 6 961 956 0.48 
[3, 2] 6 963 956 0.76 
[3, 3] 7 1820 1760 3.4 
[3, 4] 8 4876 5428 10.2 
[4, 3] 8 5172 5428 4.7 
[4, 4] 9 10,160 10,568 3.9 
[4, 5] 10 33,584 31,068 8.1 
[5, 4] 10 33,932 31,068 9.2 
[5, 5] 11 67,746 62,640 82 
[5, 6] 12 177,201 179,092 1.1 
[6, 5] 12 178,461 179,092 0.35 
[6, 6] 13 370,472 369,160 0.36 
[6, 7] 14 1,033,105 1,034,828 0.17 
[7, 6] 14 1,034,923 1,034,828 0.009 
[7, 7] 15 2,172,702 NT - -  

Table IV. High-Temperature Magnetic Susceptibility for a Spin-l/2 Heisenberg Model in a 
Three-space-dimensional Face-Centered Cubic Lattice 

No. of input 
IN, M] coefficients Pad6 Exact % error 

[0, 1] 2 144 240 40 
[0, 2] 3 4032 6624 39 
[1, 1] 3 4800 6624 28 
[ l, 2] 4 203,616 234,720 13 
[ 1, 3] 5 9,230,112 10,208,832 10 
[2, 2] 5 9,387,269 10,208,832 8 
[2, 3] 6 5.0641 x l0 s 5.2681 x l0 s 4 
[2, 4] 7 3.0639 x 1010 3.1435 x 101~ 2.5 
[3, 3] 7 3.0720 x 101~ 3.1435 x 101~ 2.3 
[3, 4] 8 2.1045 x 1012 2.1278 x 1012 1.1 

[3, 5] 9 1.5997 x 1014 1.6106 x 1014 0.7 
[4, 4] 9 1.6005 x 1014 1.6106 x 10 t4 0.6 
[4, 5] 10 1.3444 x 10 '6 NT - -  
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Table V. Five-Loop Beta Function gq~4 Theory 

No. of input 
[N, M] coefficients Pad6 Exact % error 

[0, 1] 2 5.35 16.27 67 
[0,2] 3 -- 51.4 --135.8 62 
[1, 1] 3 - -93 .4  --135.8 3 1  
[2, 1] 4 1,133.5 1,424.3 20 
[1, 2] 4 1,187.5 1,424.3 17 
[1, 3] 5 -- 15,652 N T  - -  
[3, 1] 5 - 14,938 N T  - -  
[2, 2] 5 --  16,312 N T  - -  

We now turn to examples from PQFT in high-energy physics. Our first 
example is the five-loop beta function from g~b 4 theory (Kleinert, 1991). The 
beta function f l (g) is given by 

f l (g)  - 1.5g 2 - 2.83g 3 + 16.27g 4 - 135.8g 5 + 1424.3g 6 (15) 

The results are shown in Table V. Again the results are very good and the 
percent error decreases as one goes to higher order. 

Let us now consider the three-loop QCD fl function (Tarasov et  al., 1980) 
for various values of  Arc, the number of  colors, and Ns, the number of  quark 
flavors. The results are shown in Table VI. The estimate is from equation 
I, the next term I (NT I) is also from equation I, and NT II is from equation 
II of  equations (8). It can be seen that there is very good agreement over 
a large range of  No and N I. In fact, one can show that there is good agreement 
in the large-N~ ( >> 1) limit and this is a good approximation even for N~, = 3! 

Next we turn to the Euler series which is Borel summable and which 
is asymptotic to 

fo ~ e - t d t  (16) E ( x )  = 1 + t x  

We will analyze the series 
oo 

E ( x ) =  Z ( - 1 ) " n !  x" (17) 
n = 0  

in some detail, as we believe PQFT series are also asymptotic series. 
(Although ~b 4 theory is Borel summable, QCD is not. However, nonpertur- 
bative effects may render the Borel integral finite in QCD.) 

West (1991) has also analyzed this series. The terms decrease until a 
minimum is reached and then increase without bound. For  QED this occurs 
at order approximately ~ - 1  137 and we need not worry too much, 
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Table VI. QCD Beta Function for Various N c and Nf a 

1467 

Nc Nf Exact Estimate NT I NT II 

3 0 1429 946 20,006 17,722 
1 1155 772 14,930 13,292 
3 644 455 6477 5920 
5 181 195 846 841 

4 0 3386 2242 63,229 56,010 
3 1956 1336 29,408 26,453 
6 672 583 5733 5631 

5 0 6613 4379 154,367 136,743 
5 2940 2065 49,099 44,753 
8 981 958 8629 8624 

6 0 11,428 7567 320,096 283,550 
6 5068 3556 101,502 92,472 

10 1321 1461 11,658 11,528 
8 6 15,561 10,595 467,414 419,807 

9 10,244 7362 253,190 233,149 
13 3616 3694 47,329 47,307 

10 6 34,694 23,380 1,377,319 1,230,853 
14 I2,726 10,201 306,685 294,621 
16 7648 7500 132,437 132,388 

14 6 109,035 72,914 6,399,395 5,697,112 
17 48,194 35,475 1,949,804 1,814,000 
23 17,965 19,028 389,956 388,592 

18 29 42,709 42,700 1,292,209 1,292,208 
22 36 71,208 74,522 2,467,455 2,462,110 
26 40 160,586 145,072 8,170,562 8,094,304 

OThe last four columns are multiplied by - 1 .  

but for QCD it may occur much earlier, since order ~ s  1 may be much 
smaller. 

The common belief, shared by West, is that one should stop when the 
minimum is reached and this gives the most  accurate value possible. For 
x = 0.1, one should keep eight terms and one obtains three-figure agree- 
ment  with the result obtained from (16), 

E(0.1) = 0.91563333939788 (18) 

For  x = 0.2, one should keep only four terms and one obtains only 
one-figure agreement with the result obtained from (16), 

E(0.2) = 0.852110881422367 (19) 

This is true if one uses the partial sums, which can be seen from Tables VII 
and VIII .  However  if one uses the PA [N, M] one can obtain 14-figure 
agreement with equations (13) and (14)! The prediction for the next term 
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Table VII. ~ ( - 1 ) n n !  x n for x =0 .1  a 

[N, M] Pad6 Partial sum Exact N T  Estimated NT  

[1, 1] 0.9167 0.92 - 6 . 0  - 4 . 0  
[1, 2] 0.9155 0.914 24,0 20.0 
[2, 1] 0.9154 0.914 24.0 18.0 
[5, 5] 0.91563334 0.9158 - 3 . 9 9  • 107 - 3 . 9 8  • 107 
[5, 6] 0.915633338 0.9154 4.79 x 108 4.78 • 10 s 
[6,5] 0.915633337 0.9154 4.79 x 108 4.78 • 10 s 

[10,10] 0.915633339398 0.9319 -5 .10909  • 1 0 1 9  -5 .10908  • 1019 
[I0,11] 0.915633339398 0.88 1.1240007 • 1 0 2 1  1.123999 x 1021 
[11,10] 0.915633339398 0.88 1.1240007 x 1 0 2 1  1.123999 x 1021 
[15, 15] 0.91563333939788 2 • 102 -8.22283865 • 1033 -8.22283863 • 1033 
[15, 1~ 0.91563333939788 - 6  • 102 2.631308369 • I0 as 2.631308365 x 10 as 
[16, 15] 0.91563333939788 - 6  x 102 2.631308369 x 1035 2.631308365 x 103s 

aThe series is asymptotic to E (0.1) = 0.91563333939788. 

Table VIII. ~ ( - 1 ) n n !  x n for x =0.2  a 

[N, M] Pad6 Partial sum Exact NT Estimated NT 

[1, 1] 0.857 0.88 -6 .0  --4.0 
[1,2] 0.851 0.83 24.0 20.0 
[2, 1] 0.850 0.83 24.0 18.0 
[5,5] 0.8521116 1.1 --3.992• -3.983• 
[5, 6] 0.8521106 0.285 4.79 x 10 s 4.78 • 10 s 
[6, 5] 0.8521105 0.285 4.79 • l0 s 4.78 • 10 s 

[10, 10] 0.8521108818 2.05x 104 --5.10909x 1019 -5 .10908x 1019 
[10, 11] 0.8521108812 - 8 . 7 x  104 1.1240007x 1021 1.1239991 • 1021 
[11, 10] 0.8521108812 - 8 . 7 x  104 1.1240007x 1021 1.1239990x 1021 
[15, 15] 0.852t10881425 2.4 x 1011 -8.22283865 x 1 0 3 3  -8.22283863 x 1033 
[15, 16] 0.8521108814232 - 1 . 5 2 x  1012 2.631308369• 1 0 3 5  2.631308365x 1035 
[16, 15] 0.8521108814231 - 1.52 x 1012 2.631308369 x 1 0 3 5  2.631308365 x 1035 
[21,21] 0.85211088142366 5.52x 1021 -6.041526306337x 1052 --6.041526306332x 105~ 
[21,22] 0.85211088142366 --4.76 x 1022 2.658271574788 • 1054 2.658271574787 x 1054 
[22,21] 0.85211088142366 --4.76x 1022 2.658271574788 x 1054 2.658271574787x 1054 

~The series is asymptotic to E (0.2) = 0.85211088142366. 

(NT) is also excellent! In fact, we can push the accuracy even higher. The 
only limitation seems to be rounding problems which will eventually occur 
(we used quadra-precision). In fact, just for fun, I pushed the accuracy up 
and obtained, for x = 0 . 1 ,  agreement with the integral in (16) to 33 
significant figures! Thus, in perturbative QCD, where one is limited by the 
large value of ~,, especially at low energies, one may use PA and improve 
the possible accuracy considerably. Note in Tables VII and VIII that the 
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exact next term (NT) and the estimated NT, although they agree, are both 
very large, for large M and N. Moreover, the partial sums oscillate wildly. 
However, the PA [N, M] converges beautifully to E(x)! 

In conclusion, we have estimated, from PAs, several examples from 
PQFT, f rom both condensed matter theory and high-energy physics. The 
results are excellent! Moreover, we have studied an asymptotic series and 
have shown that one can obtain extremely accurate results from the PAs, 
while the partial sums can give only two or three figures. 

After this work was done, we received a preprint from J. Fleischer 
et aL (1990) in which PAs are used to estimate the perturbative coefficients 
for 

R = a,o,(e + e -~hadrons ) / a ( e  + e - ~ # + # - )  (20) 

)~(x) [up to x 5, see equation (8)],//(g) [see equation (9)], and the four loop 
fl function of QCD (for Nc = 3 and Nf = 5), fl~l. 11. Unfortunately, they 
used incorrect values for R and 3(g). Our results for )~(x) (up to x 5) and 
fl~l, 11 agree. 
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